本文讨论了创建和分析用于数据挖掘和文本分析研究的新数据集,这为利兹大学国家方言语料库的联合研究项目做出了贡献。该报告调查了机器学习分类器,以对各个法语国家的法语方言文本进行分类。遵循CRISP-DM方法的步骤,本报告探讨了数据收集过程,数据质量问题和数据转换以进行文本分析。最后,在应用了合适的数据挖掘技术之后,讨论了评估方法,最佳总体特征以及分类器和结论。
translated by 谷歌翻译
在本文中,我们提出了一种用于在高光谱图像中聚类的新动力学系统算法。该算法的主要思想是,数据点是\``推动\''的方向,该方向是增加密度和最终位于同一密集区域的像素组属于同一类。这本质上是由数据歧管上数据点密度梯度定义的微分方程的数值解。类的数量是自动化的,所得聚类可能非常准确。除了提供准确的聚类外,该算法还提出了一种新的工具,可以理解高维度的高光谱数据。我们在Urban上评估了算法(可在www.tec.ary.mil/hypercube/上获得)场景,将性能与K-Means算法进行比较,使用预识别的材料类作为地面真理。
translated by 谷歌翻译
设计机器学习算法准确但公平,而不是基于任何敏感属性进行区分,对于社会接受对关键应用的AI至关重要。在本文中,我们提出了一种新颖的公平表示方法,称为R \'enyi公平信息瓶颈方法(RFIB),该方法包含了代表性的效用,公平性和紧凑性的约束,并将其应用于图像分类。我们方法的一个关键属性是,与大多数先前的工作相比,我们认为人口统计学奇偶ant和均衡的赔率是公平的约束,从而使对这两个标准的满意度更加细致。利用各种方法,我们表明我们的目标产生了涉及经典信息瓶颈(IB)措施的损失函数,并根据r \'enyi nyi nyi差异$ \ alpha $在共同信息上的r \'enyi差异ib术语IB术语测量紧凑度上建立上限在输入及其编码嵌入之间。在三个不同的图像数据集(Eyepacs,celeba和Fairface)上进行实验,我们研究了$ \ alpha $参数的影响以及其他两个可调IB参数对实现效用/公平性权衡目标的影响,并表明$ \ \ \ \ Alpha $参数提供了一个额外的自由度,可用于控制表示的紧凑性。我们使用各种效用,公平性和复合效用/公平指标评估方法的性能,表明RFIB的表现优于当前最新方法。
translated by 谷歌翻译
语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译
保证AI在不受限制的环境中是一个关键问题。我们的框架解决了域名适应,公平性和反事实分析的AI保证挑战,通过发现和干预对数据(例如天气或照明条件)的变化的因素进行操作,从而显着影响AI模型的稳健性。这里的鲁棒性被理解为模型性能对敏感因素的变化的不敏感性。敏感因素传统上被设置在监督环境中,由此有人知道a-priori(例如,对于公平性,这可能是性别或比赛等因素)。相比之下,我们的动机是现实生活场景,其中较少或没有,实际上是一个关于某些导致模型失败的某些因素的先验。这导致我们考虑各种设置(无监督,域泛化,半监督),其对应于对这些因素的不同程度的不完整知识。因此,我们的两步方法是通过a)发现导致AI系统以无监督的方式失败的敏感因素,然后b)干预模型以减少这些因素的影响。我们的方法考虑了由增强,一致性和对抗性干预(ACAI)组成的3个干预措施。我们展示了对所发现/源极端因素的干预措施,以概括为目标/真实因素。我们还展示了如何在半监督的情况下对某些目标因子标签的半监督方式进行适应性,通过自动化干预选择。实验表明,我们的方法改善了基线模型,关于实现最佳效用与敏感性/鲁棒性权衡。
translated by 谷歌翻译
我们解决了从由一个未知照明条件照射的物体的多视图图像(及其相机姿势)从多视图图像(和它们的相机姿势)恢复物体的形状和空间变化的空间变化的问题。这使得能够在任意环境照明下呈现对象的新颖视图和对象的材料属性的编辑。我们呼叫神经辐射分解(NERFVERTOR)的方法的关键是蒸馏神经辐射场(NERF)的体积几何形状[MILDENHALL等人。 2020]将物体表示为表面表示,然后在求解空间改变的反射率和环境照明时共同细化几何形状。具体而言,Nerfactor仅使用重新渲染丢失,简单的光滑度Provers以及从真实学中学到的数据驱动的BRDF而无任何监督的表面法线,光可视性,Albedo和双向反射率和双向反射分布函数(BRDF)的3D神经领域-world brdf测量。通过显式建模光可视性,心脏请能够将来自Albedo的阴影分离,并在任意照明条件下合成现实的软或硬阴影。 Nerfactor能够在这场具有挑战性和实际场景的挑战和捕获的捕获设置中恢复令人信服的3D模型进行令人满意的3D模型。定性和定量实验表明,在各种任务中,内容越优于基于经典和基于深度的学习状态。我们的视频,代码和数据可在peoptom.csail.mit.edu/xiuming/projects/nerfactor/上获得。
translated by 谷歌翻译
We present Muse, a text-to-image Transformer model that achieves state-of-the-art image generation performance while being significantly more efficient than diffusion or autoregressive models. Muse is trained on a masked modeling task in discrete token space: given the text embedding extracted from a pre-trained large language model (LLM), Muse is trained to predict randomly masked image tokens. Compared to pixel-space diffusion models, such as Imagen and DALL-E 2, Muse is significantly more efficient due to the use of discrete tokens and requiring fewer sampling iterations; compared to autoregressive models, such as Parti, Muse is more efficient due to the use of parallel decoding. The use of a pre-trained LLM enables fine-grained language understanding, translating to high-fidelity image generation and the understanding of visual concepts such as objects, their spatial relationships, pose, cardinality etc. Our 900M parameter model achieves a new SOTA on CC3M, with an FID score of 6.06. The Muse 3B parameter model achieves an FID of 7.88 on zero-shot COCO evaluation, along with a CLIP score of 0.32. Muse also directly enables a number of image editing applications without the need to fine-tune or invert the model: inpainting, outpainting, and mask-free editing. More results are available at https://muse-model.github.io
translated by 谷歌翻译
We introduce Argoverse 2 (AV2) - a collection of three datasets for perception and forecasting research in the self-driving domain. The annotated Sensor Dataset contains 1,000 sequences of multimodal data, encompassing high-resolution imagery from seven ring cameras, and two stereo cameras in addition to lidar point clouds, and 6-DOF map-aligned pose. Sequences contain 3D cuboid annotations for 26 object categories, all of which are sufficiently-sampled to support training and evaluation of 3D perception models. The Lidar Dataset contains 20,000 sequences of unlabeled lidar point clouds and map-aligned pose. This dataset is the largest ever collection of lidar sensor data and supports self-supervised learning and the emerging task of point cloud forecasting. Finally, the Motion Forecasting Dataset contains 250,000 scenarios mined for interesting and challenging interactions between the autonomous vehicle and other actors in each local scene. Models are tasked with the prediction of future motion for "scored actors" in each scenario and are provided with track histories that capture object location, heading, velocity, and category. In all three datasets, each scenario contains its own HD Map with 3D lane and crosswalk geometry - sourced from data captured in six distinct cities. We believe these datasets will support new and existing machine learning research problems in ways that existing datasets do not. All datasets are released under the CC BY-NC-SA 4.0 license.
translated by 谷歌翻译
There are multiple scales of abstraction from which we can describe the same image, depending on whether we are focusing on fine-grained details or a more global attribute of the image. In brain mapping, learning to automatically parse images to build representations of both small-scale features (e.g., the presence of cells or blood vessels) and global properties of an image (e.g., which brain region the image comes from) is a crucial and open challenge. However, most existing datasets and benchmarks for neuroanatomy consider only a single downstream task at a time. To bridge this gap, we introduce a new dataset, annotations, and multiple downstream tasks that provide diverse ways to readout information about brain structure and architecture from the same image. Our multi-task neuroimaging benchmark (MTNeuro) is built on volumetric, micrometer-resolution X-ray microtomography images spanning a large thalamocortical section of mouse brain, encompassing multiple cortical and subcortical regions. We generated a number of different prediction challenges and evaluated several supervised and self-supervised models for brain-region prediction and pixel-level semantic segmentation of microstructures. Our experiments not only highlight the rich heterogeneity of this dataset, but also provide insights into how self-supervised approaches can be used to learn representations that capture multiple attributes of a single image and perform well on a variety of downstream tasks. Datasets, code, and pre-trained baseline models are provided at: https://mtneuro.github.io/ .
translated by 谷歌翻译
The success of neural networks builds to a large extent on their ability to create internal knowledge representations from real-world high-dimensional data, such as images, sound, or text. Approaches to extract and present these representations, in order to explain the neural network's decisions, is an active and multifaceted research field. To gain a deeper understanding of a central aspect of this field, we have performed a targeted review focusing on research that aims to associate internal representations with human understandable concepts. In doing this, we added a perspective on the existing research by using primarily deductive nomological explanations as a proposed taxonomy. We find this taxonomy and theories of causality, useful for understanding what can be expected, and not expected, from neural network explanations. The analysis additionally uncovers an ambiguity in the reviewed literature related to the goal of model explainability; is it understanding the ML model or, is it actionable explanations useful in the deployment domain?
translated by 谷歌翻译